Semantic Theory 2014 - Exercise Sheet 8

Manfred Pinkal
Exercises are due on Tuesday, June 24, 10:15 a.m.

8.1 Event semantics and modifier attachment

Sentence (1) is syntactically ambiguous between the two readings indicated in (1a) and (1b), due to the notorious "modifier attachment ambiguity". The syntactic ambiguity induces a semantic ambiguity.
(1a) $[\mathrm{s}[\mathrm{s}[\mathrm{s}$ Mary $[\mathrm{vp}$ call- $[\mathrm{NP}$ a friend $]]][\mathrm{pp}$ in Munich $]]$ PAST]
(1b) $\quad[\mathrm{s}[\mathrm{s}$ Mary $[\mathrm{vp}$ call- $[\mathrm{NP} a[\mathrm{~N}$ friend [pp in Munich]]]] PAST]
(a) Give informal paraphrases of the two readings. Represent the readings of the formulas as predicate-logic formulas, using an event-semantic analysis of the verb call: call': $\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle$ (as in last Tuesday's lecture).
(b) Derive semantic representations for (1a) and (1b) compositionally, and simplify using beta-reduction. Assume the following translations for the lexical expressions in (1):

$$
\begin{aligned}
& \text { Mary } \Rightarrow \text { mary': } \mathrm{e} \\
& \text { Munich } \Rightarrow \text { munich': e } \\
& \text { call- } \Rightarrow \lambda Q \lambda \times \mathrm{x} \lambda \mathrm{e}[Q(\lambda \mathrm{y} . \mathrm{call} *(\mathrm{y})(\mathrm{x})(\mathrm{e}))]:\langle\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle,\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle \\
& \text { friend } \Rightarrow \text { friend': }\langle\mathrm{e}, \mathrm{t}\rangle \\
& \text { in } \Rightarrow \lambda \mathrm{z} \lambda \mathrm{~F} \lambda \mathrm{v}\left[\mathrm{in}^{\prime}(\mathrm{z})(\mathrm{v}) \wedge \mathrm{F}(\mathrm{v})\right]:\langle\mathrm{e},\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle\rangle \\
& \text { PAST } \Rightarrow \lambda \mathrm{E}\left[\exists \mathrm{e}\left(\mathrm{E}(\mathrm{e}) \wedge \mathrm{e}<\mathrm{e}_{\mathrm{u}}\right)\right]:\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle
\end{aligned}
$$

For simplicity, we assume that the subject of call and the internal argument of the preposition are type e expressions (denoting standard objects). The indefinite article should be translated as usual. The λ-variables F and v in the translation of the preposition are of the general kind, ranging over standard predicates/entities as well as event predicates/entities.

8.2 Type-raised subjects in event semantics

As discussed some weeks ago, the simple representation of transitive verbs as twoplace first-order relations $\langle e,\langle e, t\rangle\rangle$ leads to a type conflict, which can be resolved by a type-raised analysis of the verb (type $\langle\langle\langle e, t\rangle, t\rangle,\langle e, t\rangle\rangle$. Introduction of an additional event argument causes a similar problem already for the subject position of intransitive verbs (and more generally for the subject position of any event-denoting verb): Instead of $\lambda x\left[\right.$ walk $\left.^{\prime}(x)\right]:\langle e, t\rangle$, we have $\lambda x \lambda e\left[\right.$ walk' $\left.^{\prime}(x)(e)\right]:\langle e,\langle e, t\rangle\rangle$, which cannot combine with the $\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$ subject.
(a) Do the same trick with the subject position of walk, as we did it before with the object position of transitive verbs: type-raise the subject argument. Hint: Formally, this works precisely the same way as for the type-raised ("event-free") analysis of transitive verbs.
(b) Give a type-raised representation for the event-denoting variant of the transitive verb call. Hint: The representation will look similar to the translation of the ("eventfree") type-raised analysis of the ditransitive give.
(c) Use the modified semantics of walk and call to compositionally derive the meaning of Sentence (2) and (3). Assume that the underlying syntactic structures are (2') and (3'), respectively.
(2) Bill walks
(2') [s[s Bill [vp walk-]] PRES]
(3) Mary calls a friend
(3') $\quad[\mathrm{s}[\mathrm{s}$ Mary[vp call- $[\mathrm{NP}$ a friend $]]]$ PRES $]$

